

- In Sept. 2006, there was no known way to synthesize CIGS nanocrystals.
- There were methods for CulnS₂ nanocrystals reported, but these gave very low yields of material.
- We knew how to make copper sulfide nanocrystals, so we started there [Ghezelbash, Korgel, Langmuir, 2005]
- We first synthesized CulnS_2 nanocrystals, then extended that to CulnSe_2 nanocrystals

	Standard Cell	
	Efficiency	0.341%
	V _{oc}	329 mV
	J _{sc}	3.26 mA/cm ²
ZnO Cds	Fill Factor	0.318
Cuinse, nanocrystals Mo Glass	Mo work function is ~4.2 eV, – resulting in a Schottky barrier at the Mo/CIS interface	

